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Star Products and Quantum Algebras
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I show explicitly that the star product on a triangular Poisson Lie group leads to
a quantum algebra structure (triangular Hopf algebra) on the quantized enveloping
algebra of the Lie algebra of the Lie group, and that equivalent star-products
generate isomorphic quantum algebras.

1. INTRODUCTION

The development of the quantum inverse scattering method (QISM)

(Faddeev, 1984) to investigate the integrable models of quantum field theory

and statistical physics gives rise to some interesting algebraic constructions.

These investigations allow one to select a special class of Hopf algebras now
known as quantum groups and quantum algebras (Drinfeld, 1986; Jimbo,

1986). The nice R-matrix formulation of the quantum group theory (Faddeev

et al., 1989), based on the fundamental relation of QISM (the FRT relation),

has given an additional impulse for these investigations. As is well known,

quantum groups can be seen as noncommutative generalizations of topological

spaces which have a group structure. Such a structure induces an Abelian
Hopf algebra structure (Abe, 1980) on the algebra of smooth functions on

the group. Quantum groups are defined then as non-Abelian Hopf algebras

(Takhtajan, 1989). A way to generate them is to deform the Abelian product

of the Hopf algebra of functions into a non-Abelian one (*-product), using

the so-called quantization by deformation of star-quantization (Bayen et al.,
1978a, b; Flato et al., 1975). This quantization technique gives a deformed

product once it is assigned a Poisson bracket on the algebra of smooth

functions. In order to obtain that the deformed algebra is a Hopf algebra,

namely a quantum group, the starting group G has to be endowed with a
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Poisson±Lie structure. Finally, using the duality procedure, this quantization

leads to the structure of a quantum algebra on the quantized enveloping

algebra of the Lie algebra corresponding to the above Lie group G.
By contrast to our earlier work (Mansour, 1997, 1998a), the present

paper shows explicitly that the star product on a triangular Poisson Lie group

G leads to the structure of a quantum algebra (triangular Hopf algebra) on

the quantized enveloping algebra of the Lie algebra corresponding to the Lie

group G and that equivalents star-products generate isomorphic quantum

algebras.
This paper is organized as follows. Section 2 reviews basic definitions

of quantum algebras. Section 3 shows explicitly the main result: A star-

product on a Poisson±Lie group leads to a quantum algebra structure on

the quantized enveloping algebra of the Lie bialgebra corresponding to the

Poisson±Lie group. The last section shows that equivalent star-products gen-

erate isomorphic quantum algebras.

2. QUANTUM ALGEBRAS

In this section we review some general aspects of the theory of quantum

algebras, following mainly the presentation of Drinfeld (1986) and Faddeev
et al. (1989). Quantum algebras are nontrivial examples of Hopf algebras.

Let A denote such a Hopf algebra. It is equipped with a multiplication map

m: A ^ A ® A, a co-multiplication D : A ® A ^ A, antipode S: A ® A, and

counit e : A ® C, where C is the field of complex numbers. We suppose that

A contains the unit element 1, with D (1) 5 1 ^ 1, S(1) 5 1, e (1) 5 1. These

operations have the following properties:

m(a ^ 1) 5 m(1 ^ a) 5 a (1)

m(m ^ id ) 5 m(id ^ m) (2)

( D ^ id ) D 5 (id ^ D ) D (3)

D (ab) 5 D (a) D (b) (4)

m(S ^ id ) D (a) 5 m(id ^ S) D (a) 5 e (a)1 (5)

S(ab) 5 S(b)S(a) (6)

D + S 5 (S ^ S) + D op (7)

( e ^ id ) D 5 (id ^ e ) D 5 id (8)

e (ab) 5 e (a) e (b) (9)

where a, b P A, and P is the permutation operator P(a ^ b) 5 (b ^ a).

Equation (1) is the definition of the unit element, while Eqs. (2) and (3) are
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the associativity and the coassociativity of A, respectively. Equation (4)

defines D to be a homomorphism of A to A ^ A, and (5)±(9) are the defining

properties of the counit and antipode.

Definition 1. A pair (A, R) consisting of a Hopf algebra A and an

invertible element R P A ^ A will be called a triangular Hopf algebra if

D op 5 R D R 2 1 (10)

( D ^ id )R 5 R13R23 (11)

(id ^ D )R 5 R13R12 (12)

RR21 5 1 (13)

Here D op 5 P + D and the symbols R13, R12, R23, R21 have the following

meaning: If R 5 ( i ai ^ bi , then

R13 5 o
i

ai ^ 1 ^ bi , R23 5 o
i

1 ^ ai ^ bi

R12 5 o
i

ai ^ bi ^ 1, R21 5 o
i

bi ^ ai

From (10) and (11) we deduce that R satisfies the quantum Yang±

Baxter equation

R12R13R23 5 R23R13R12 (14)

3. STAR-PRODUCT AND QUANTUM ALGEBRAS

Let G be a Lie group, and g its Lie algebra. The enveloping algebra of

the Lie algebra g is defined to be the tensor algebra T(g) 5 % `
k 5 0 g ^ k, modulo

the ideal I in T(g), generated by all elements in T(g) of the form

x ^ y 2 y ^ x 2 [x, y] (15)

Let 1 be the identity of the enveloping algebra; then the morphism of g into

U(g) ^ U(g) given by

x ® x ^ 1 1 1 ^ x (16)

extends to a morphism

D 0: U(g) ® U(g) ^ U(g) (17)

The antipode of the enveloping algebra is defined as a bijective map

S0: U(g) ® U(g) (18)
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such that for any x P g we have

S0(x) 5 2 x (19)

Now let r P (g ^ g) be a solution of the classical Yang±Baxter equation

v r, r b 5 0 (20)

where the Schouten bracket is defined as follows:

v r, r b 5 [r12, r13] 1 [r12, r23] 1 [r13, r23]

Then the Lie bialgebra structure (g, d (r)) on g is given by the algebra 1-cocycle

w : g ® g ^ g

x j (adx ^ 1 1 1 ^ adx)r (21)

where adx stands for the adjoint representation and the Poisson±Lie structure

on Lie group (G, r) is given by

{ f , c } 5 o
i, j

r ij(X r
i ( f )X r

j ( c ) 2 X l
i ( f )X l

j ( c )) (22)

where X r
i 5 (Rg)* Xi and X l

i 5 (Lg)* Xi are the right and left vector fields,

respectively, on the group G, (X i) is a basis of g, (Rg)*, (Lg)* are the derivative

mappings corresponding to the right and left translation, respectively.
If we denote by R(G) [L(G)] the set of all right (left)-invariant vector

fields on (G, r), then using elementary properties of derivative mappings one

can show that each of L(G) and R(G) is a vector space with a bracket operation

that satisfies the Jacobi identity. Since every element of L(G) or R(G) is

completely determined by its value at the identity element of (G, r), it follows

that L(G) and R(G) are isomorphic to the Lie algebra [the tangent space to
(G, r) at the identity (e)].

Such morphisms can be extended respectively to algebra morphisms

U(g) ® D l(G)

A j Al (23)

U(g) ® Dr(G)

A j Ar (24)

where Dl(G) and Dr(G), are respectively, the algebra of left-invariant differen-

tial operators and the algebra of right-invariant differential operators on the

Poisson±Lie group (G, r), such that if A is given by the product A 5 (x1 . . .
xN), then A l and Ar are respectively given by

Al 5 (x1 . . . xN)l 5 x l
1 . . . x l

N (25)



Star Products and Quantum Algebras 1459

and

Ar 5 (x1. . .xN)r 5 (x1)
r. . .(xN)r (26)

This implies that the action of U(g) on F(G) [the space of smooth

functions on the Poisson±Lie group (G, r)] will be given by

^ X, Y l( f ) & 5 ^ XY, f & (27)

and

^ X, Y r( f ) & 5 ^ S0(Y )X, f & (28)

Now we give the following definition (Moreno and Valero, 1992).

Definition 2. A star-product on the Poisson±Lie group is defined as a

bilinear map

F(G) 3 F(G) ® F(G)[[h]]

( f , c ) j f * c 5 o
j

h jCj ( f , c ) (29)

such that:
(i) When the above map is extended to F(G)[[h]], it is formally associative

( f * c ) * x 5 f * ( c * x ) (30)

(ii) C0( f , c ) 5 f ? c 5 c ? f .

(iii) C1( f , c ) 5 { f , c }.

(iv) The two cochains Ck( f , c ) are bidifferential operators on F(G).

In this definition the Hopf algebra F(G)[[h]], with a new product * and

an unchanged coproduct is considered to be a topological Hopf algebra.

We recall that deformations with unchanged coproduct are called preferred

deformations (Gestenhaber, 1964; Gestenhaber and Schack, 1992). This con-

dition is imposed on quantization because of the invariance property of the
Poisson±Lie group bracket

D ({ f , c }) 5 { D ( f ), D ( c )}

It is therefore natural to impose the same compatibility condition on the

star-product with respect to the coproduct of F(G), i.e.,

D ( f * c ) 5 ( D ( f ) * D ( c )) (31)

is satisfied. The star-product on the right side is canonically defined on F(G)

^ F(G) by

( f ^ c ) * ( f 8 ^ c 8) 5 ( f * f 8) ^ ( c * c 8) (32)

Remark. If all Ck are a left (right)-invariant bidifferential operators, then

the corresponding star-product is called a left (right)-invariant one.
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Definition 3. Two star-products * 1 and * 2 defined on F(G) are said to

be formally equivalent if there exists a series

T 5 id 1 o
`

i 5 1

hiTi (33)

where the Ti are differential operators, such that

T( f * 1 c ) 5 T( f ) * 2 T( c ) (34)

Thanks to the morphisms (23), (24), if Ci is a left-invariant two-cochain,

then there is an Fi P U(g) ^ U(g) such that

Cl
i ( f , c ) 5 F l

i ( f ^ c ) (35)

and similarly for the right-invariant two-cochain there exists an element

Hi P U(g) ^ U(g) such that

Cr
j ( f , c ) 5 Hr

j ( f ^ c ) (36)

If we introduce the two elements of U(g) ^ U(g)[[h]]

F 5 1 1 o
i $ 1

Fi h
i

H 5 1 1 o
j $ 1

Hjh
j

then we obtain the following result:

Proposition 1. The associativity of the left-invariant star-product implies

( D 0 ^ id )F ? (F ^ 1) 5 (1 ^ D 0)F ? (1 ^ F ) (37)

and the associativity of the right-invariant star-product leads to the follow-

ing equality:

(S ^ 2
0 (H ) ^ 1) ? ( D 0 ^ id )S ^ 2

0 (H ) 5 (1 ^ S ^ 2
0 (H )) ? (1 ^ D 0)S

^ 2
0 (H ) (38)

Proof. Writing the right-invariant star-product as

( f * r c ) 5 m (Hr( f ^ c )) (39)

where m is the usual mutiplication on the algebra of smooth functions on
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the group and H 5 1 1 1/2hr 1 ( i $ 2 Hi h
i, then for any element X in the

enveloping algebra, we have

^ X, f * r ( c * r x ) &

5 ^ X, m (id ^ m )((id ^ D 0)H
r ? Hr

23( f ^ c ^ x )) &

5 ^ (id ^ D 0) D 0(X ), (id ^ D 0)H
r ? Hr

23( f ^ c ^ x ) &

5 ^ (1 ^ (S ^ 2
0 )H )(id ^ D 0)((S

^ 2
0 )H )(id ^ D 0) D 0(X ), ( f ^ c ^ x ) & (40)

Similarly we find that

^ X, ( f * r c ) * r x &

5 ^ ((S ^ 2
0 )H ^ 1)( D 0 ^ id )((S ^ 2

0 )H )( D 0 ^ id ) D 0(X ),( f ^ c ^ x ) & (41)

So, comparing (40) and (41), we obtain the result (38); the same proof is
valid for the left-invariant one.

Proposition 2. Assume that F is a left-invariant star product on the group

G; then S ^ 2
0 (F ) is a right-invariant star product on the group G.

Proof. By applying the operator (S0 ^ S0 ^ S0) to Eq. (37) and using

the fact that (S0 ^ S0) + D 0 5 D op
0 + S0, we find obviously Eq. (38).

We define the star-product on the Poisson±Lie group by the follow-

ing expression:

f * c 5 m ((S ^ 2
0 ) 2 1(F 2 1)r ? F l( f ^ c )) (42)

In fact, the product defined in this way is associative:

( f * c ) * x

5 m ((S ^ 2
0 ) 2 1(F 2 1)r? F l( m ((S ^ 2

0 ) 2 1(F 2 1)r ? F l( f ^ c )) ^ x ))

5 m ( m ^ id )(( D 0 ^ 1)((S ^ 2
0 ) 2 1(F 2 1)r) ? ( D 0 ^ 1)F l

? ((S ^ 2
0 ) 2 1(F 2 1)r ^ 1) ? (F l ^ 1)( f ^ c ^ x ))

5 m ( m ^ id )(( D 0 ^ id)((S ^ 2
0 ) 2 1(F 2 1)r) ? ((S ^ 2

0 ) 2 1(F 2 1)r ^ 1)

? ( D 0 ^ id )F l ? (F l ^ 1)( f ^ c ^ x ))

5 m ( m ^ id )((id ^ D 0)((S
^ 2
0 ) 2 1(F 2 1)r) ? (1 ^ (S ^ 2

0 ) 2 1(F 2 1)r)

? (id ^ D )F l ? (1 ^ F l)( f ^ c ^ x ))
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5 m (id ^ m )((id ^ D 0)((S
^ 2
0 ) 2 1(F 2 1)r) ? (1 ^ (S ^ 2

0 ) 2 1(F 2 1)r)

? (id ^ D 0)F
l ? (1 ^ F l)( f ^ c ^ x ))

5 m (id ^ m )((id ^ D 0)((S
^ 2
0 ) 2 1(F 2 1)r) ? (id ^ D 0)F

l

? (1 ^ (S ^ 2
0 ) 2 1(F 2 1)r) ? (1 ^ F l)( f ^ c ^ x ))

5 m ((S ^ 2
0 ) 2 1(F 2 1)r? F l ? ( f ^ m ((S ^ 2

0 ) 2 1(F 2 1)r ? F l( c ^ x )))

5 f * ( c * x ) (43)

For the compatibility relation, the proof is given by Moreno and Valero
(1992). Following Mansour (1998b), a star-product defines a deformation of a

quotient algebra Fe(G) defined as the set of elements of F(G) in a neighborhood

containing the identity of G modulo the following relation of equivalence:

f , c if ^ X, f 2 c & 5 0 for any X P U(g)

where ^ , & is the pairing between Fe(G) and U(g).

Let us recall that two bialgebras U, A are said to be in duality if there
exists a doubly nondegenerate bilinear form

^ , & : U 3 A ® C, ^ , & : (u, a) ® ^ u, a & , u P U, a P A

such that for any u, v P U and a, b P A

^ u, ab & 5 ^ D U(u), a ^ b &

^ uv, a & 5 ^ u ^ v, D A(a) &

^ 1U , a & 5 e A(a), ^ u, 1U & 5 e U(u)

The duality between bialgebras can be used to obtain an unknown algebra

from a known one if the two are in duality. So the deformation we talk about

is a deformation of the Fe(G) as a bialgebra; this allows us to provide by the
duality the deformed algebra F*e (G)[[h]] where F*e (G) is the set of distributions

on G with support at the the unit element (e). Then using the fact that the

set of distributions on G with support at the identity element is the enveloping

algebra of the Lie algebra of the Lie group, we deduce that a star-product

provides a deformation of the enveloping algebra.

The quantized enveloping algebra U(g)[[h]] is endowed with the struc-
ture of a Hopf algebra where the multiplication algebra is the ordinary

convolution on F*e (G) and the coproduct D F is given by (Mansour, 1998b)

^ D F(X ), f ^ c & 5 ^ X, f * c & (44)

for all f , c P Fe(G) and X P U(g).
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In fact, using Eq. (27) and (28) we obtain

^ D F(X ), f ^ c & 5 ^ X, m ((S ^ 2
0 ) 2 1(F 2 1)r? F l( f ^ c )) &

5 ^ D 0(X ), (S ^ 2
0 ) 2 1(F 2 1)r ? F l( f ^ c ) &

5 ^ F 2 1 ? D 0(X ) ? F, ( f ^ c ) & (45)

Thus

D F(X ) 5 F 2 1 ? D 0(X ) ? F (46)

The associativity of the star-product and Eq. (44) imply that the twisted
coproduct D F is coassociative, i.e.,

( D F ^ id ) D F 5 (id ^ D F) D F

For the antipode of the quantized enveloping algebra, we recall first that the

antipode S0 of U(g) satisfies the equation

m(S0 ^ id ) D 0(X ) 5 m(id ^ S0) D 0(X ) 5 « (X )1 (47)

where m is the usual multiplication on the enveloping algebra U(g). We can

split F and F 2 1 respectively as

F 5 o
k

ak ^ bk , F 2 1 5 o
k

ck ^ dk

and set u 5 m(id ^ S0)(F
2 1). It is an invertible element of U(g)[[h]]; then

we can easily show that the antipode of the quantized enveloping algebra

U(g)[[h]] is given by

SF(X ) 5 u ? S0(X ) ? u 2 1 (48)

where u 2 1 5 m(S0 ^ id )F.
In fact,

m(SF ^ id ) D F(X ) 5 m(uS0u
2 1 ^ id )(F 2 1 D 0(X )F )

5 o
i, j,k

uS0(ai)S0(X 8k)S0(cj)u
2 1dj X 9kbi (49)

with D 0(X ) 5 ( k X 8k ^ X 9k
Owing to the fact that S0 satisfies Eq. (47) and that

o
j

S0(cj)u
2 1dj 5 m(S0 ^ id )(F ? F 2 1) 5 1 (50)

we obtain

m(SF ^ id ) D F(X ) 5 o
i

uS0(ai)bi e (X )1 5 e (X )1 (51)
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Similarly, we can prove that

m(id ^ SF) D F(X ) 5 e (X )1 (52)

In other words, the topological Hopf algebra structure on F(G)[[h]] is given

by the following antipode:

Sh( f ) 5 S((S 2 1
0 (u))r(u 2 1)lf )

The proof is obvious by using Eqs. (27), (28). Now if we introduce the

following element defined by Drinfeld (1983)

RF 5 F 2 1
21 ? F (53)

then we can easily show that RF defines a quasitriangular structure on the

quantized enveloping algebra U(g)[[h]].
In fact, using polynomial notation (Moreno and Valero, 1992), we obtain

( D F ^ id )RF 5 (F 2 1 ^ 1)( D ^ id )RF (F ^ 1)

5 F 2 1(x, y)F 2 1(z, x 1 y)F(x 1 y, z) F(x, y)

5 F 2 1(x, y)F 2 1(z, x 1 y)F(x, y 1 z) F( y, z)

5 F 2 1(x, y)F 2 1(z, x 1 y)F(x, y 1 z) F(z, y)F 2 1(z, y)F( y, z)

5 F 2 1(x, y)F 2 1(z, x 1 y)F(x, y 1 z) F(z, y)RF ( y, z)

5 F 2 1(x, y)F 2 1(z, x 1 y)F(x 1 z, y) F(x, z)R F( y, z)

5 F 2 1(x, y)F 2 1(z, x 1 y)F(x 1 z, y) F(z, x)RF (x, z)RF ( y, z)

5 RF (x, z)RF ( y, z) (54)

Thus,

( D F ^ id )RF 5 (RF)13 ? (RF)23 (55)

where we have used the definition (53) in the first, sixth, and seventh equalities

and the relation (37) written in polynomial notation for the remaining ones.

Similarly, we obtain

(id ^ D F)RF 5 (RF)13 ? (RF)12 (56)

From the fact that f * 1 5 1 * f 5 f for all f P Fe(G) we deduce that

(id ^ « )F 5 ( « ^ id )F 5 1 (57)

Consequently

( « ^ id )(RF) 5 (id ^ « )(RF) 5 1 (58)
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and from the definition (53) we deduce that

(RF)21 ? RF 5 1 (59)

Now using again the expression (53), we obtain that

( D F)op 5 P( D F)

5 P(F 2 1) ? D 0 ? P(F ) (60)

5 P(F 2 1) ? F ? D F ? F 2 1 ? P(F )

Then

( D F)op 5 RF ? D F ? (RF) 2 1 (61)

From (54) and (60) we show that RF satisfies the quantum Yang±Baxter

equation

(RF)12 ? (RF)13 ? (RF)23 5 (RF)23 ? (RF)13 ? (RF)12 (62)

Then we have establiched that a star-product on a Poisson±Lie group

(G, r) leads to a quantum algebra (Ug[[h]], D F , RF , SF) where F 5 1 1 1±2 hr
1 ( i $ 2 Fi h

i and RF 5 1 1 hr 1 . . . ; conversely, we have the following result:

Theorem 1. Let (Ug[[h]], D , R, S) be a triangular Hopf algebra; then it

can be obtained by a star-product on the connected and simply connected

Poisson±Lie group (G, r) corresponding to the Lie algebra g, where R 5
1 1 hr 1 . . . .

4. EQUIVALENTS STAR-PRODUCTS ON A POISSON ± LIE
GROUP

Let F and FÅ be two star-products, i.e., two elements of the Hopf algebra
U(g)[[h]], and let A 5 (U((g)[[h]], D F , RF , SF) and AÅ 5 (U((g)[[h]], D FÅ , RFÅ ,

SFÅ ) be the resulting quantum algebras, where

D F 5 F ? D 0 ? F 2 1, RF 5 F 2 1
21 ? F (63)

D FÅ 5 FÅ ? D 0 ? FÅ 2 1, RFÅ 5 FÅ 2 1
21 ? FÅ (64)

Then it is easily seen that AÅ can be obtained from A by applying the twist
FÃ5 F 2 1 ? FÅ . In fact

D FÅ 5 FÃ? D F ? FÃ2 1 (65)

and

RFÅ 5 FÃ2 1
21 ? RF ? FÃ (66)
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If the two star-products are equivalent, i.e., the corresponding elements F
and FÅ are related by the expression

FÅ 5 D 0(E
2 1) ? F ? (E ^ E ) (67)

for some invertible element E of U(g)[[h]], then the coproduct D FÅ can be

rewritten as

D FÅ (X ) 5 (E 2 1 ^ E 2 1) D F(E ? X ? E 2 1) ? (E ^ E ) (68)

In fact

D FÅ (X ) 5 FÅ 2 1 ? D 0(X ) ? FÅ

5 (E 2 1 ^ E 2 1) ? F 2 1 ? D 0(E ) D 0(X ) D 0(E
2 1) ? F ? (E ^ E )

5 (E 2 1 ^ E 2 1) ? F 2 1 ? D 0(E ? X ? E 2 1) ? F ? (E ^ E ) (69)

5 (E 2 1 ^ E 2 1) ? D F(E ? X ? E 2 1) ? (E ^ E )

and the two twisted antipodes are related by the following expression:

SFÅ 5 E 2 1S0(E
2 1) ? SF ? S0(E ) ? E (70)

In fact,

SFÅ 5 m(id ^ S0)(FÅ 2 1)S0(X )m (S0 ^ id )(FÅ )

5 m(id ^ S0)((E
2 1 ^ E 2 1)F 2 1 D (E ))

3 S0(X )m(S0 ^ id )( D (E 2 1)F(E ^ E ))

5 m(id ^ S0)(E
2 1 ^ E 2 1) ? m(id ^ S0)F

2 1 m(id ^ S0) D (E ) S0(X )

3 m(S0 ^ id )( D (E 2 1))m(S0 ^ id )(F )m(S0 ^ id )(E ^ E ))

5 E 2 1S0(E
2 1) uS0(X )u 2 1S0(E )S0(E)

5 E 2 1S0(E
2 1) ? SF(X ) ? S0(E ) ? E

Similarly, the tringular structures are related by

RFÅ 5 (E 2 1 ^ E 2 1) ? RF ? (E ^ E ) (71)

In fact, using again the polynomial notation, we have

RFÅ (x, y) 5 FÅ 2 1( y, x) ? FÅ (x, y)

5 E 2 1( y)E 2 1(x)F 2 1( y, x)E( y 1 x)E 2 1(x 1 y)F(x, y) ? E(x)E( y)

5 E 2 1( y)E 2 1(x)F 2 1( y, x)F(x, y) ? E(x)E( y)

5 (E 2 1 ^ E 2 1)(x, y)RF(x, y) ? (E ^ E )(x, y)

5 ((E 2 1 ^ E 2 1) ? RF ? (E ^ E )(x, y)
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So, the induced isomorphism maps the triangular structures as well.

This says that the process of quantization deformation can only give a genu-

inely new triangular quantum group if the two-cocycle F corresponding to
the star-product is cohomologically [relative to the Hopf algebra cohomology

(Majid, 1995)] nontrivial; for example, if the second group of cohomology

for the Hopf algebra U(g)[[h]] vanishes, then all star-products on the con-

nected and simply connected Poisson±Lie group corresponding to the Lie

bialgebra g are equivalents.
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